\[ a b (y(x)-1) y(x) y''(x)+y'(x)^2 (-((2 a b-a-b) y(x)+(1-a) b))+f(x) (y(x)-1) y(x) y'(x)=0 \] ✓ Mathematica : cpu = 1.25569 (sec), leaf count = 98
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {a \text {$\#$1}^{\frac {1}{a}} \left ((a+1) \, _2F_1\left (\frac {1}{a},-\frac {1}{b};1+\frac {1}{a};\text {$\#$1}\right )+\text {$\#$1} \, _2F_1\left (1+\frac {1}{a},\frac {b-1}{b};2+\frac {1}{a};\text {$\#$1}\right )\right )}{a+1}\& \right ]\left [\int _1^x c_1 e^{-\int _1^{K[3]} \frac {f(K[1])}{a b} \, dK[1]} \, dK[3]+c_2\right ]\right \}\right \}\]
✓ Maple : cpu = 0.093 (sec), leaf count = 46
\[ \left \{ {\it \_C1}\,{{\rm e}^{-{\frac {fx}{ab}}}}-{\it \_C2}+\int ^{y \left ( x \right ) }\!{\frac {\sqrt [b]{{\it \_a}-1}\sqrt [a]{{\it \_a}}}{{\it \_a}\, \left ( {\it \_a}-1 \right ) }}{d{\it \_a}}=0 \right \} \]