\[ h(y(x))^2 \left (-j\left (x,\frac {y'(x)}{h(y(x))}\right )\right )+h(y(x)) y''(x)-h(y(x)) y'(x)^2=0 \] ✗ Mathematica : cpu = 1.20666 (sec), leaf count = 0 , could not solve
DSolve[-(h[y[x]]^2*j[x, Derivative[1][y][x]/h[y[x]]]) - h[y[x]]*Derivative[1][y][x]^2 + h[y[x]]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.999 (sec), leaf count = 71
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it RootOf} \left ( \int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}-\int ^{{\it \_Z}}\! \left ( h \left ( {\it \_f} \right ) \right ) ^{-1}{d{\it \_f}} \right ) ,[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) =1 \right \} , \left \{ {\it \_a}=x,{\it \_b} \left ( {\it \_a} \right ) ={\frac {{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{h \left ( y \left ( x \right ) \right ) }} \right \} , \left \{ x={\it \_a},y \left ( x \right ) ={\it RootOf} \left ( \int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}-\int ^{{\it \_Z}}\! \left ( h \left ( {\it \_f} \right ) \right ) ^{-1}{d{\it \_f}} \right ) \right \} ] \right ) \right \} \]