\[ \left (x^2 y(x) y''(x)+x^2 \left (-y'(x)^2\right )+y(x)^2\right )^2-4 x y(x) \left (x y'(x)-y(x)\right )^3=0 \] ✗ Mathematica : cpu = 16.9983 (sec), leaf count = 0 , could not solve
DSolve[-4*x*y[x]*(-y[x] + x*Derivative[1][y][x])^3 + (y[x]^2 - x^2*Derivative[1][y][x]^2 + x^2*y[x]*Derivative[2][y][x])^2 == 0, y[x], x]
✓ Maple : cpu = 0.497 (sec), leaf count = 82
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) ={\frac {1}{{{\it \_a}}^{2}} \left ( 2\,\sqrt {{\it \_a}\, \left ( {\it \_a}\,{\it \_b} \left ( {\it \_a} \right ) -1 \right ) }{\it \_b} \left ( {\it \_a} \right ) {\it \_a}-2\,\sqrt {{\it \_a}\, \left ( {\it \_a}\,{\it \_b} \left ( {\it \_a} \right ) -1 \right ) }-1 \right ) } \right \} , \left \{ {\it \_a}=x,{\it \_b} \left ( {\it \_a} \right ) ={\frac {{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{y \left ( x \right ) }} \right \} , \left \{ x={\it \_a},y \left ( x \right ) ={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]