\[ y^{(3)}(x)+y(x) y''(x)-y'(x)^2+1=0 \] ✗ Mathematica : cpu = 0.0332906 (sec), leaf count = 0 , could not solve
DSolve[1 - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] + Derivative[3][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.657 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a},[ \left \{ \left ( {\frac {{\rm d}^{2}}{{\rm d}{{\it \_a}}^{2}}}{\it \_b} \left ( {\it \_a} \right ) \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}+ \left ( {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}{\it \_b} \left ( {\it \_a} \right ) + \left ( {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) \right ) {\it \_b} \left ( {\it \_a} \right ) {\it \_a}- \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}+1=0 \right \} , \left \{ {\it \_a}=y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right \} , \left \{ x=\int \! \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{-1}\,{\rm d}{\it \_a}+{\it \_C1},y \left ( x \right ) ={\it \_a} \right \} ] \right ) \right \} \]