\[ \sqrt {1-x^2} y'(x)-y(x) \sqrt {y(x)^2-1}=0 \] ✓ Mathematica : cpu = 0.0321208 (sec), leaf count = 52
\[\left \{\left \{y(x)\to \sqrt {\tan ^2\left (c_1+\sin ^{-1}(x)\right )+1} \left (-\cot \left (c_1+\sin ^{-1}(x)\right )\right )\right \},\left \{y(x)\to \sqrt {\tan ^2\left (c_1+\sin ^{-1}(x)\right )+1} \cot \left (c_1+\sin ^{-1}(x)\right )\right \}\right \}\]
✓ Maple : cpu = 0.017 (sec), leaf count = 16
\[ \left \{ \arcsin \left ( x \right ) +\arctan \left ( {\frac {1}{\sqrt { \left ( y \left ( x \right ) \right ) ^{2}-1}}} \right ) +{\it \_C1}=0 \right \} \]