2.1912   ODE No. 1912

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

{x1(t)=ax2(t)+bx3(t)cos(ct)+bx4(t)sin(ct),x2(t)=ax1(t)+bx3(t)sin(ct)bx4(t)cos(ct),x3(t)=ax4(t)bx1(t)cos(ct)bx2(t)sin(ct),x4(t)=ax3(t)bx1(t)sin(ct)+bx2(t)cos(ct)} Mathematica : cpu = 0.0638185 (sec), leaf count = 0 , could not solve

DSolve[{Derivative[1][x1][t] == a*x2[t] + b*Cos[c*t]*x3[t] + b*Sin[c*t]*x4[t], Derivative[1][x2][t] == -(a*x1[t]) + b*Sin[c*t]*x3[t] - b*Cos[c*t]*x4[t], Derivative[1][x3][t] == -(b*Cos[c*t]*x1[t]) - b*Sin[c*t]*x2[t] + a*x4[t], Derivative[1][x4][t] == -(b*Sin[c*t]*x1[t]) + b*Cos[c*t]*x2[t] - a*x3[t]}, {x[t], y[t], z[t]}, t]

Maple : cpu = 2.798 (sec), leaf count = 2956

{{x1(t)=_C2+_C3sin(ct)+_C4cos(ct),x2(t)=cos(ct)_C3+sin(ct)_C4+_C1,x3(t)=b(cos(ct)_C1asin(ct)_C2a_C3(a+c))a(a+c),x4(t)=b(cos(ct)_C2a+sin(ct)_C1a+_C4(a+c))a(a+c)},{x1(t)=_C1et24a24ca4b22c22c2(4a2+4ca+4b2+c2)+_C2et24a24ca4b22c22c2(4a2+4ca+4b2+c2)+_C3et24a24ca4b22c2+2c2(4a2+4ca+4b2+c2)+_C4et24a24ca4b22c2+2c2(4a2+4ca+4b2+c2),x2(t)=18c(a2+ca+b2)(4_C1(1/4(4a24ca4b22c224a2c2+4c3a+4b2c2+c4)3/2+4a24ca4b22c224a2c2+4c3a+4b2c2+c4(a2+ca+b2+c2))e1/24a24ca4b22c224a2c2+4c3a+4b2c2+c4t+4_C2(1/4(4a24ca4b22c224a2c2+4c3a+4b2c2+c4)3/2+4a24ca4b22c224a2c2+4c3a+4b2c2+c4(a2+ca+b2+c2))e1/24a24ca4b22c224a2c2+4c3a+4b2c2+c4t4(_C3e1/24a24ca4b22c2+24a2c2+4c3a+4b2c2+c4t_C4e1/24a24ca4b22c2+24a2c2+4c3a+4b2c2+c4t)(1/4(4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4)3/2+(a2+ca+b2+c2)4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4)),x3(t)=18bc(a2+ca+b2)(8_C1(1/8a(4a24ca4b22c224a2c2+4c3a+4b2c2+c4)3/2cos(ct)+1/2cos(ct)(a3+ab2b2c)4a24ca4b22c224a2c2+4c3a+4b2c2+c4+(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))sin(ct)(a2+ca+b2))e1/24a24ca4b22c224a2c2+4c3a+4b2c2+c4t+8(1/8a(4a24ca4b22c224a2c2+4c3a+4b2c2+c4)3/2cos(ct)1/2cos(ct)(a3+ab2b2c)4a24ca4b22c224a2c2+4c3a+4b2c2+c4+(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))sin(ct)(a2+ca+b2))_C2e1/24a24ca4b22c224a2c2+4c3a+4b2c2+c4t+8_C3(1/8a(4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4)3/2cos(ct)+1/2cos(ct)(a3+ab2b2c)4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4+sin(ct)(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))(a2+ca+b2))e1/24a24ca4b22c2+24a2c2+4c3a+4b2c2+c4t+8(1/8a(4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4)3/2cos(ct)1/2cos(ct)(a3+ab2b2c)4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4+sin(ct)(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))(a2+ca+b2))_C4e1/24a24ca4b22c2+24a2c2+4c3a+4b2c2+c4t),x4(t)=18bc(a2+ca+b2)(4_C1(1/4asin(ct)(4a24ca4b22c224a2c2+4c3a+4b2c2+c4)3/2+sin(ct)(a3+ab2b2c)4a24ca4b22c224a2c2+4c3a+4b2c2+c42(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))cos(ct)(a2+ca+b2))e1/24a24ca4b22c224a2c2+4c3a+4b2c2+c4t4(1/4asin(ct)(4a24ca4b22c224a2c2+4c3a+4b2c2+c4)3/2+sin(ct)(a3+ab2b2c)4a24ca4b22c224a2c2+4c3a+4b2c2+c4+2(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))cos(ct)(a2+ca+b2))_C2e1/24a24ca4b22c224a2c2+4c3a+4b2c2+c4t+4(1/4a(4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4)3/2sin(ct)+sin(ct)(a3+ab2b2c)4a24ca4b22c2+24a2c2+4c3a+4b2c2+c42cos(ct)(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))(a2+ca+b2))_C3e1/24a24ca4b22c2+24a2c2+4c3a+4b2c2+c4t4_C4e1/24a24ca4b22c2+24a2c2+4c3a+4b2c2+c4t(1/4a(4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4)3/2sin(ct)+sin(ct)(a3+ab2b2c)4a24ca4b22c2+24a2c2+4c3a+4b2c2+c4+2cos(ct)(1/24a2c2+4c3a+4b2c2+c4+c(a+c/2))(a2+ca+b2)))}}