\[ x \log (x) y'(x)-y(x) \left (2 \log ^2(x)+1\right )-y(x)^2 \log (x)-\log ^3(x)=0 \] ✓ Mathematica : cpu = 0.0777614 (sec), leaf count = 98
\[\left \{\left \{y(x)\to -\frac {x \left (\frac {c_1 e^{\frac {\log ^2(x)}{2}} \log (x)}{x}+\frac {e^{\frac {\log ^2(x)}{2}} \log (x)}{x}+\frac {e^{\frac {\log ^2(x)}{2}} \log ^3(x)}{2 x}\right )}{c_1 e^{\frac {\log ^2(x)}{2}}+\frac {1}{2} e^{\frac {\log ^2(x)}{2}} \log ^2(x)}\right \}\right \}\]
✓ Maple : cpu = 0.024 (sec), leaf count = 23
\[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( \left ( \ln \left ( x \right ) \right ) ^{2}+{\it \_C1}+2 \right ) }{ \left ( \ln \left ( x \right ) \right ) ^{2}+{\it \_C1}}} \right \} \]