2.30   ODE No. 30

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

xa1y(x)2xa+y(x)=0 Mathematica : cpu = 0.0655547 (sec), leaf count = 230

{{y(x)xa+1(c1(12xa212Γ(a+1)(Ia1(2x)+Ia+1(2x))12axa21Γ(a+1)Ia(2x))12(1)aaxa21Γ(1a)Ia(2x)+12(1)axa212Γ(1a)(Ia1(2x)+I1a(2x)))c1xa/2Γ(a+1)Ia(2x)+(1)axa/2Γ(1a)Ia(2x)}}

Maple : cpu = 0.085 (sec), leaf count = 54

{y(x)=xa+1(Ka+1(2x)_C1+Ia+1(2x))1x(Ka(2x)_C1+Ia(2x))1}

Hand solution

y+xa1y2xa=0y=xaxa1y2(1)=P(x)+Q(x)y+R(x)y2

This is Ricatti first order non-linear ODE. Using standard transformationy=uuR(x)=xa+1uu

Hence

y=(a+1)xauu+xa+1uuxa+1(u)2u2

Comparing to (1) gives

xaxa1y2=(a+1)xauu+xa+1uuxa+1(u)2u2xaxa1(xa+1uu)2=(a+1)xauu+xa+1uuxa+1(u)2u21xa1xax2a+2(u)2u2=(a+1)uu+xuux(u)2u21x(u)2u2=(a+1)uu+xuux(u)2u21=(a+1)uu+xuu(2)xu+(1+a)uu=0

This is Bessel like second order linear ODE. The solution is

u=C11xaBesselI(a,2x)+C21xaBesselK(a,2x)

But ddx1xaBesselI(a,2x)=1x1+aBesselI(1+a,2x)ddx1xaBesselI(a,2x)=1x1+aBesselK(1+a,2x)

Hence

u=C11x1+aBesselI(1+a,2x)C21x1+aBesselK(1+a,2x)

And from y=xa+1uu

y=x1+aC11x1+aBesselI(1+a,2x)C21x1+aBesselK(1+a,2x)C11xaBesselI(a,2x)+C21xaBesselK(a,2x)

Let C=C2C1 hence

y=x1+a1x1+aBesselI(1+a,2x)C1x1+aBesselK(1+a,2x)1xaBesselI(a,2x)+C1xaBesselK(a,2x)

Or

y=x1+ax12BesselI(1+a,2x)Cx12BesselK(1+a,2x)BesselI(a,2x)+CBesselK(a,2x)=x12+aBesselI(1+a,2x)Cx12+aBesselK(1+a,2x)BesselI(a,2x)+CBesselK(a,2x)

Verification

eq:=diff(y(x),x)+x^(-a-1)*y(x)^2-x^a = 0; 
num:=x^(1/2+a)*BesselI(1+a,2*sqrt(x))-_C1*x^(1/2+a)*BesselK(1+a,2*sqrt(x)); 
den:=BesselI(a,2*sqrt(x))+_C1*BesselK(a,2*sqrt(x)); 
my_sol:=num/den; 
odetest(y(x)=my_sol,eq); 
0