\[ -\frac {y(x)^2 f'(x)}{g(x)}+\frac {g'(x)}{f(x)}+y'(x)=0 \] ✓ Mathematica : cpu = 27.2779 (sec), leaf count = 157
\[\text {Solve}\left [\int _1^{y(x)} \left (\frac {1}{(f(x) K[2]+g(x))^2}-\int _1^x \left (\frac {2 \left (K[2]^2 f(K[1]) f'(K[1])-g(K[1]) g'(K[1])\right )}{g(K[1]) (K[2] f(K[1])+g(K[1]))^3}-\frac {2 K[2] f'(K[1])}{g(K[1]) (K[2] f(K[1])+g(K[1]))^2}\right ) \, dK[1]\right ) \, dK[2]+\int _1^x -\frac {y(x)^2 f(K[1]) f'(K[1])-g(K[1]) g'(K[1])}{f(K[1]) g(K[1]) (y(x) f(K[1])+g(K[1]))^2} \, dK[1]=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.544 (sec), leaf count = 58
\[ \left \{ y \left ( x \right ) ={\frac {1}{ \left ( f \left ( x \right ) \right ) ^{2}} \left ( -f \left ( x \right ) g \left ( x \right ) \int \!{\frac {{\frac {\rm d}{{\rm d}x}}f \left ( x \right ) }{g \left ( x \right ) \left ( f \left ( x \right ) \right ) ^{2}}}\,{\rm d}x-g \left ( x \right ) f \left ( x \right ) {\it \_C1}-1 \right ) \left ( {\it \_C1}+\int \!{\frac {{\frac {\rm d}{{\rm d}x}}f \left ( x \right ) }{g \left ( x \right ) \left ( f \left ( x \right ) \right ) ^{2}}}\,{\rm d}x \right ) ^{-1}} \right \} \]
Hand solution
\begin {align} -\frac {f^{\prime }}{g}y^{2}+\frac {g^{\prime }}{f}+y^{\prime } & =0\nonumber \\ y^{\prime } & =-\frac {g^{\prime }}{f}+\frac {f^{\prime }}{g}y^{2}\nonumber \\ & =P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\tag {1} \end {align}
This is Ricatti first order non-linear ODE. \(P\left ( x\right ) =-\frac {g^{\prime }}{f},Q\left ( x\right ) =0,R\left ( x\right ) =\frac {f^{\prime }}{g}\).
To do.