\[ y'(x)^2+2 x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.432854 (sec), leaf count = 1757
\[\left \{\left \{y(x)\to -\frac {x^2}{4}-\frac {1}{4} \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}+\frac {-9 x^4-72 \cosh \left (3 c_1\right ) x-72 \sinh \left (3 c_1\right ) x}{36 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1-i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}-\frac {\left (1+i \sqrt {3}\right ) \left (-9 x^4-72 \cosh \left (3 c_1\right ) x-72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}-\frac {\left (1-i \sqrt {3}\right ) \left (-9 x^4-72 \cosh \left (3 c_1\right ) x-72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to -\frac {x^2}{4}-\frac {1}{4} \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}+\frac {-9 x^4+72 \cosh \left (3 c_1\right ) x+72 \sinh \left (3 c_1\right ) x}{36 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1-i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}-\frac {\left (1+i \sqrt {3}\right ) \left (-9 x^4+72 \cosh \left (3 c_1\right ) x+72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to -\frac {x^2}{4}+\frac {1}{8} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}-\frac {\left (1-i \sqrt {3}\right ) \left (-9 x^4+72 \cosh \left (3 c_1\right ) x+72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \}\right \}\]
✓ Maple : cpu = 0.654 (sec), leaf count = 619
\[ \left \{ y \left ( x \right ) ={\frac {1}{16} \left ( i\sqrt {3} \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}- \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-2\,x\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}-{x}^{2} \right ) \left ( i\sqrt {3} \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}- \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}+6\,x\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}-{x}^{2} \right ) \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{-{\frac {2}{3}}}},y \left ( x \right ) ={\frac {1}{16} \left ( i\sqrt {3} \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}+ \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}+2\,x\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}+{x}^{2} \right ) \left ( i\sqrt {3} \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}+ \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-6\,x\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}+{x}^{2} \right ) \left ( 6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{-{\frac {2}{3}}}},y \left ( x \right ) ={\frac {1}{4} \left ( {{x}^{2}{\frac {1}{\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}}}}-x+\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}} \right ) ^{2}}+x \left ( {{x}^{2}{\frac {1}{\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}}}}-x+\sqrt [3]{6\,{\it \_C1}-{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}} \right ) \right \} \]