\[ a y(x) y'(x)-b x-c+y'(x)^2=0 \] ✓ Mathematica : cpu = 2.11155 (sec), leaf count = 142
\[\text {Solve}\left [\left \{x=c_1 e^{b \left (\frac {\log (\text {K$\$$1178389})}{b}-\frac {\log \left (b-a \text {K$\$$1178389}^2\right )}{2 b}\right )}+e^{b \left (\frac {\log (\text {K$\$$1178389})}{b}-\frac {\log \left (b-a \text {K$\$$1178389}^2\right )}{2 b}\right )} \left (\frac {\tan ^{-1}\left (\frac {\sqrt {a} \text {K$\$$1178389}}{\sqrt {b-a \text {K$\$$1178389}^2}}\right )}{\sqrt {a}}-\frac {c \sqrt {b-a \text {K$\$$1178389}^2}}{b \text {K$\$$1178389}}\right ),y(x)=\frac {b x}{a \text {K$\$$1178389}}+\frac {c-\text {K$\$$1178389}^2}{a \text {K$\$$1178389}}\right \},\{y(x),\text {K$\$$1178389}\}\right ]\]
✓ Maple : cpu = 0.262 (sec), leaf count = 281
\[ \left \{ y \left ( x \right ) =2\,{\frac { \left ( -1/4\, \left ( {{\rm e}^{2\,{\it RootOf} \left ( \sqrt {a}{\it \_C1}\,b{{\rm e}^{2\,{\it \_Z}}}-a{{\rm e}^{2\,{\it \_Z}}}bx+\sqrt {a}{\it \_C1}\,{b}^{2}-{{\rm e}^{2\,{\it \_Z}}}{\it \_Z}\,b-a{{\rm e}^{2\,{\it \_Z}}}c+a{b}^{2}x-{\it \_Z}\,{b}^{2}+abc \right ) }}+b \right ) ^{2}{{\rm e}^{-2\,{\it RootOf} \left ( \sqrt {a}{\it \_C1}\,b{{\rm e}^{2\,{\it \_Z}}}-a{{\rm e}^{2\,{\it \_Z}}}bx+\sqrt {a}{\it \_C1}\,{b}^{2}-{{\rm e}^{2\,{\it \_Z}}}{\it \_Z}\,b-a{{\rm e}^{2\,{\it \_Z}}}c+a{b}^{2}x-{\it \_Z}\,{b}^{2}+abc \right ) }}+a \left ( bx+c \right ) \right ) {{\rm e}^{{\it RootOf} \left ( \sqrt {a}{\it \_C1}\,b{{\rm e}^{2\,{\it \_Z}}}-a{{\rm e}^{2\,{\it \_Z}}}bx+\sqrt {a}{\it \_C1}\,{b}^{2}-{{\rm e}^{2\,{\it \_Z}}}{\it \_Z}\,b-a{{\rm e}^{2\,{\it \_Z}}}c+a{b}^{2}x-{\it \_Z}\,{b}^{2}+abc \right ) }}}{{a}^{3/2} \left ( {{\rm e}^{2\,{\it RootOf} \left ( \sqrt {a}{\it \_C1}\,b{{\rm e}^{2\,{\it \_Z}}}-a{{\rm e}^{2\,{\it \_Z}}}bx+\sqrt {a}{\it \_C1}\,{b}^{2}-{{\rm e}^{2\,{\it \_Z}}}{\it \_Z}\,b-a{{\rm e}^{2\,{\it \_Z}}}c+a{b}^{2}x-{\it \_Z}\,{b}^{2}+abc \right ) }}+b \right ) }} \right \} \]