\[ y'(x)^4+3 (x-1) y'(x)^2-3 (2 y(x)-1) y'(x)+3 x=0 \] ✗ Mathematica : cpu = 300.006 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 2.064 (sec), leaf count = 171
\[ \left \{ y \left ( x \right ) ={1 \left ( \left ( -6+{{\it \_C1}}^{3}+ \left ( 6\,x-6 \right ) {\it \_C1} \right ) \sqrt {{{\it \_C1}}^{2}+4\,x}-2\,{{\it \_C1}}^{4}+ \left ( -14\,x+6 \right ) {{\it \_C1}}^{2}+ \left ( \left ( {{\it \_C1}}^{2}+4\,x \right ) ^{{\frac {3}{2}}}+6 \right ) {\it \_C1}-16\,{x}^{2} \right ) \left ( 12\,{\it \_C1}-12\,\sqrt {{{\it \_C1}}^{2}+4\,x} \right ) ^{-1}},y \left ( x \right ) ={1 \left ( \left ( 6-{{\it \_C1}}^{3}+ \left ( -6\,x+6 \right ) {\it \_C1} \right ) \sqrt {{{\it \_C1}}^{2}+4\,x}-2\,{{\it \_C1}}^{4}+ \left ( -14\,x+6 \right ) {{\it \_C1}}^{2}+ \left ( - \left ( {{\it \_C1}}^{2}+4\,x \right ) ^{{\frac {3}{2}}}+6 \right ) {\it \_C1}-16\,{x}^{2} \right ) \left ( 12\,{\it \_C1}+12\,\sqrt {{{\it \_C1}}^{2}+4\,x} \right ) ^{-1}},y \left ( x \right ) =-x+{\frac {5}{6}},y \left ( x \right ) =x+{\frac {1}{6}} \right \} \]