\[ y'(x)=\frac {\sqrt {y(x)}}{F\left (\frac {x-y(x)}{\sqrt {y(x)}}\right )+\sqrt {y(x)}} \] ✓ Mathematica : cpu = 298.102 (sec), leaf count = 271
\[\text {Solve}\left [\int _1^{y(x)} \left (-\int _1^x -\frac {-2 \left (-\frac {K[1]-K[2]}{2 K[2]^{3/2}}-\frac {1}{\sqrt {K[2]}}\right ) \sqrt {K[2]} F'\left (\frac {K[1]-K[2]}{\sqrt {K[2]}}\right )-\frac {F\left (\frac {K[1]-K[2]}{\sqrt {K[2]}}\right )}{\sqrt {K[2]}}-1}{\left (-2 \sqrt {K[2]} F\left (\frac {K[1]-K[2]}{\sqrt {K[2]}}\right )+K[1]-K[2]\right )^2} \, dK[1]-\frac {F\left (\frac {x-K[2]}{\sqrt {K[2]}}\right )}{x \sqrt {K[2]}}+\frac {2 F\left (\frac {x-K[2]}{\sqrt {K[2]}}\right )^2+\sqrt {K[2]} F\left (\frac {x-K[2]}{\sqrt {K[2]}}\right )+x}{x \left (2 \sqrt {K[2]} F\left (\frac {x-K[2]}{\sqrt {K[2]}}\right )+K[2]-x\right )}\right ) \, dK[2]+\int _1^x \frac {1}{-2 \sqrt {y(x)} F\left (\frac {K[1]-y(x)}{\sqrt {y(x)}}\right )+K[1]-y(x)} \, dK[1]=c_1,y(x)\right ]\]
✓ Maple : cpu = 2.772 (sec), leaf count = 40
\[ \left \{ {\frac {\ln \left ( y \left ( x \right ) \right ) }{2}}-\int ^{{x{\frac {1}{\sqrt {y \left ( x \right ) }}}}-\sqrt {y \left ( x \right ) }}\! \left ( 2\,F \left ( {\it \_a} \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}-{\it \_C1}=0 \right \} \]