\[ y'(x)=\frac {y(x) (y(x)+1)}{x (x y(x)-y(x)-1)} \] ✓ Mathematica : cpu = 0.985909 (sec), leaf count = 66
\[\text {Solve}\left [\frac {2^{2/3} \left (x y(x) \left (-\log \left (\frac {x y(x)}{(x-1) y(x)-1}\right )+\log \left (\frac {y(x)+1}{-x y(x)+y(x)+1}\right )+\log (x)+1\right )-1\right )}{9 x y(x)}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.11 (sec), leaf count = 26
\[ \left \{ y \left ( x \right ) =- \left ( x{\it lambertW} \left ( {\frac {1}{x{{\rm e}^{{x}^{-1}}}{\it \_C1}}} \right ) +1 \right ) ^{-1} \right \} \]