\[ y'(x)=(1-y(x)) \left (-f(x)+\frac {y(x) \log (y(x)-1)}{x (1-y(x)) \log (x)}-\frac {\log (y(x)-1)}{x (1-y(x)) \log (x)}\right ) \] ✗ Mathematica : cpu = 299.997 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.276 (sec), leaf count = 23
\[ \left \{ y \left ( x \right ) ={{\rm e}^{\int \!{\frac {f \left ( x \right ) }{\ln \left ( x \right ) }}\,{\rm d}x\ln \left ( x \right ) }}{x}^{{\it \_C1}}+1 \right \} \]