\[ y'(x)=\frac {x^6+9 x^4 y(x)-6 x^3+27 x^2 y(x)^2-18 x y(x)+27 y(x)^3-18 x}{9 x^2+27 y(x)+27} \] ✓ Mathematica : cpu = 0.0181279 (sec), leaf count = 75
\[\left \{\left \{y(x)\to \frac {1}{27 \left (\frac {1}{27}-\frac {1}{\sqrt {c_1-1458 x}}\right )}+\frac {1}{3} \left (-x^2-3\right )\right \},\left \{y(x)\to \frac {1}{27 \left (\frac {1}{\sqrt {c_1-1458 x}}+\frac {1}{27}\right )}+\frac {1}{3} \left (-x^2-3\right )\right \}\right \}\]
✓ Maple : cpu = 0.054 (sec), leaf count = 77
\[ \left \{ y \left ( x \right ) ={\frac {1}{-6\,x+6\,{\it \_C1}} \left ( -2\,{x}^{2}{\it \_C1}+2\,{x}^{3}-3\,\sqrt {2\,{\it \_C1}-2\,x+1}+3 \right ) },y \left ( x \right ) ={\frac {1}{-6\,x+6\,{\it \_C1}} \left ( -2\,{x}^{2}{\it \_C1}+2\,{x}^{3}+3\,\sqrt {2\,{\it \_C1}-2\,x+1}+3 \right ) } \right \} \]