\[ y'(x)=\frac {a^3 x^3 y(x)^3+3 a^2 x^2 y(x)^2+a^2 x y(x)+a^2 x+3 a x y(x)+a+1}{a^2 x^2 (a x y(x)+a x+1)} \] ✓ Mathematica : cpu = 0.0255992 (sec), leaf count = 106
\[\left \{\left \{y(x)\to \frac {1}{a^3 x^3 \left (\frac {1}{a^3 x^3}-\frac {1}{x^3 \sqrt {c_1-2 a^6 x}}\right )}-\frac {a x+1}{a x}\right \},\left \{y(x)\to \frac {1}{a^3 x^3 \left (\frac {1}{x^3 \sqrt {c_1-2 a^6 x}}+\frac {1}{a^3 x^3}\right )}-\frac {a x+1}{a x}\right \}\right \}\]
✓ Maple : cpu = 0.058 (sec), leaf count = 72
\[ \left \{ y \left ( x \right ) ={\frac {1}{ax} \left ( -ax-\sqrt {{\it \_C1}-2\,x}-1 \right ) \left ( \sqrt {{\it \_C1}-2\,x}+1 \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{ax} \left ( ax-\sqrt {{\it \_C1}-2\,x}+1 \right ) \left ( \sqrt {{\it \_C1}-2\,x}-1 \right ) ^{-1}} \right \} \]