\[ y'(x)=\frac {\sqrt {x} \left (-108 x^{3/2} y(x)+18 x^{9/2}-108 x^{3/2}+x^9-18 x^6 y(x)+108 x^3 y(x)^2-216 y(x)^3\right )}{36 x^3-216 y(x)-216} \] ✓ Mathematica : cpu = 0.0265432 (sec), leaf count = 79
\[\left \{\left \{y(x)\to \frac {1}{6} \left (x^3-6\right )-\frac {1}{216 \left (-\frac {1}{\sqrt {c_1-62208 x^{3/2}}}-\frac {1}{216}\right )}\right \},\left \{y(x)\to \frac {1}{6} \left (x^3-6\right )-\frac {1}{216 \left (\frac {1}{\sqrt {c_1-62208 x^{3/2}}}-\frac {1}{216}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.093 (sec), leaf count = 87
\[ \left \{ y \left ( x \right ) ={1 \left ( \sqrt {9\,{\it \_C1}-12\,{x}^{3/2}}{x}^{3}-3\,{x}^{3}+18 \right ) \left ( -18+6\,\sqrt {9\,{\it \_C1}-12\,{x}^{3/2}} \right ) ^{-1}},y \left ( x \right ) ={1 \left ( \sqrt {9\,{\it \_C1}-12\,{x}^{3/2}}{x}^{3}+3\,{x}^{3}-18 \right ) \left ( 18+6\,\sqrt {9\,{\it \_C1}-12\,{x}^{3/2}} \right ) ^{-1}} \right \} \]