\[ y'(x)=-y(x) \left (-\text {$\_$F1}(x)-\frac {\log (y(x))}{x}+\frac {\log (y(x))}{x \log (x)}\right ) \] ✓ Mathematica : cpu = 2.78495 (sec), leaf count = 52
\[\text {Solve}\left [\text {ConditionalExpression}\left [\int _1^x \left (\frac {\log (y(x))-\log (y(x)) \log (K[1])}{K[1]^2}-\frac {\log (K[1]) \text {$\_$F1}(K[1])}{K[1]}\right ) \, dK[1]=c_1,\Re (x)>0\lor x\notin \mathbb {R}\right ],y(x)\right ]\]
✓ Maple : cpu = 0.367 (sec), leaf count = 30
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {{\it \_C1}\,x}{\ln \left ( x \right ) }}}}{{\rm e}^{{\frac {x}{\ln \left ( x \right ) }\int \!{\frac {{\it \_F1} \left ( x \right ) \ln \left ( x \right ) }{x}}\,{\rm d}x}}} \right \} \]