\[ y'(x)=\frac {e^{\frac {y(x)}{x}} \left (x^4+x^2 e^{-\frac {y(x)}{x}}+x e^{-\frac {y(x)}{x}}+x e^{-\frac {y(x)}{x}} y(x)+e^{-\frac {y(x)}{x}} y(x)\right )}{x (x+1)} \] ✓ Mathematica : cpu = 1.62408 (sec), leaf count = 39
\[\left \{\left \{y(x)\to -x \log \left (\frac {-c_1-\frac {x^3}{3}+\frac {x^2}{2}-x+\log (x+1)}{x}\right )\right \}\right \}\]
✓ Maple : cpu = 0.679 (sec), leaf count = 36
\[ \left \{ y \left ( x \right ) =-\ln \left ( {\frac {-2\,{x}^{3}+3\,{x}^{2}+6\,\ln \left ( 1+x \right ) -6\,{\it \_C1}-6\,x}{6\,x}} \right ) x \right \} \]