\[ y'(x)=\frac {x^3 \log ^3(x)-3 x^2 y(x) \log ^2(x)-x^2+x^2 \log (x)-y(x)^3-y(x)^2-2 x y(x)+3 x y(x)^2 \log (x)+x y(x) \log (x)}{x (-y(x)-x+x \log (x))} \] ✓ Mathematica : cpu = 0.0214292 (sec), leaf count = 80
\[\left \{\left \{y(x)\to -\frac {1}{x \left (-\frac {1}{x^2 \sqrt {c_1-2 x}}-\frac {1}{x^2}\right )}-x+x \log (x)\right \},\left \{y(x)\to -\frac {1}{x \left (\frac {1}{x^2 \sqrt {c_1-2 x}}-\frac {1}{x^2}\right )}-x+x \log (x)\right \}\right \}\]
✓ Maple : cpu = 0.056 (sec), leaf count = 63
\[ \left \{ y \left ( x \right ) ={x \left ( \sqrt {{\it \_C1}-2\,x}\ln \left ( x \right ) -\ln \left ( x \right ) +1 \right ) \left ( \sqrt {{\it \_C1}-2\,x}-1 \right ) ^{-1}},y \left ( x \right ) ={x \left ( \sqrt {{\it \_C1}-2\,x}\ln \left ( x \right ) +\ln \left ( x \right ) -1 \right ) \left ( \sqrt {{\it \_C1}-2\,x}+1 \right ) ^{-1}} \right \} \]