\[ y'(x)=\frac {a^3 x^3}{8}+\frac {3 a^2 x^4}{16}+\frac {3}{4} a^2 x^2 y(x)+\frac {a^2 x^2}{4}+\frac {3 a x^5}{32}+\frac {3}{4} a x^3 y(x)+\frac {a x^3}{4}+\frac {3}{2} a x y(x)^2+a x y(x)+\frac {x^6}{64}+\frac {3}{16} x^4 y(x)+\frac {x^4}{16}+\frac {3}{4} x^2 y(x)^2+\frac {1}{2} x^2 y(x)+y(x)^3+y(x)^2-\frac {x}{2}+1 \] ✓ Mathematica : cpu = 0.153898 (sec), leaf count = 140
\[\text {Solve}\left [-\frac {1}{3} (27 a+58)^{2/3} \text {RootSum}\left [\text {$\#$1}^3 (27 a+58)^{2/3}-3\ 2^{2/3} \text {$\#$1}+(27 a+58)^{2/3}\& ,\frac {\log \left (\frac {\sqrt [3]{2} \left (\frac {1}{4} \left (6 a x+3 x^2+4\right )+3 y(x)\right )}{\sqrt [3]{27 a+58}}-\text {$\#$1}\right )}{2^{2/3}-\text {$\#$1}^2 (27 a+58)^{2/3}}\& \right ]=\frac {(27 a+58)^{2/3} x}{9\ 2^{2/3}}+c_1,y(x)\right ]\]
✓ Maple : cpu = 0.084 (sec), leaf count = 41
\[ \left \{ y \left ( x \right ) =-{\frac {{x}^{2}}{4}}-{\frac {ax}{2}}+{\it RootOf} \left ( -x+2\,\int ^{{\it \_Z}}\! \left ( 2\,{{\it \_a}}^{3}+2\,{{\it \_a}}^{2}+a+2 \right ) ^{-1}{d{\it \_a}}+{\it \_C1} \right ) \right \} \]