\[ y'(x)=\frac {(x y(x)+1) \left (x^2 y(x)^2+x^2 y(x)+x^2+2 x y(x)+x+1\right )}{x^5} \] ✓ Mathematica : cpu = 0.215418 (sec), leaf count = 103
\[\text {Solve}\left [-\frac {17}{3} \text {RootSum}\left [-17 \text {$\#$1}^3+3 \sqrt [3]{-34} \text {$\#$1}-17\& ,\frac {\log \left (\frac {\frac {x+3}{x^3}+\frac {3 y(x)}{x^2}}{\sqrt [3]{34} \sqrt [3]{-\frac {1}{x^6}}}-\text {$\#$1}\right )}{\sqrt [3]{-34}-17 \text {$\#$1}^2}\& \right ]=c_1-\frac {1}{9} 34^{2/3} \left (-\frac {1}{x^6}\right )^{2/3} x^3,y(x)\right ]\]
✓ Maple : cpu = 0.046 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) ={\frac {17\,{\it RootOf} \left ( 162\,\int ^{{\it \_Z}}\! \left ( 289\,{{\it \_a}}^{3}+54\,{\it \_a}-54 \right ) ^{-1}{d{\it \_a}}x+3\,{\it \_C1}\,x+2 \right ) x-3\,x-9}{9\,x}} \right \} \]