\[ y'(x)=\frac {y(x)}{x \log (x)}-x^3 \left (-y(x)^2-2 y(x) \log (x)-\log ^2(x)\right ) \] ✓ Mathematica : cpu = 0.120508 (sec), leaf count = 198
\[\left \{\left \{y(x)\to -\frac {c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)} \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )+\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1) \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)}+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)}{x^3 \left (c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)}+\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)\right )}\right \}\right \}\]
✓ Maple : cpu = 0.023 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( 4\,{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\,{\it \_C1}+16 \right ) }{4\,{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\,{\it \_C1}}} \right \} \]