\[ x^2 y''(x)+(x+3) x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.0285939 (sec), leaf count = 63
\[\left \{\left \{y(x)\to e^{-x} x^{\sqrt {2}-1} \left (c_1 U\left (2+\sqrt {2},1+2 \sqrt {2},x\right )+c_2 L_{-2-\sqrt {2}}^{2 \sqrt {2}}(x)\right )\right \}\right \}\]
✓ Maple : cpu = 0.12 (sec), leaf count = 93
\[ \left \{ y \left ( x \right ) =-{1 \left ( -{\it \_C1}\, \left ( \sqrt {2}+x+1 \right ) {{\sl I}_{-{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )}-{\it \_C1}\, \left ( x-\sqrt {2}+1 \right ) {{\sl I}_{{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )}+ \left ( \left ( -\sqrt {2}-x-1 \right ) {{\sl K}_{-{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )}+{{\sl K}_{{\frac {1}{2}}+\sqrt {2}}\left ({\frac {x}{2}}\right )} \left ( x-\sqrt {2}+1 \right ) \right ) {\it \_C2} \right ) {{\rm e}^{-{\frac {x}{2}}}}{\frac {1}{\sqrt {x}}}} \right \} \]