\[ -36 n^2 y'(x) \wp (x;\text {g2},\text {g3})-2 (n+3) (4 n-3) n y(x) \phi '(x)+27 y^{(3)}(x)=0 \] ✗ Mathematica : cpu = 0.128851 (sec), leaf count = 0 , could not solve
DSolve[-2*n*(3 + n)*(-3 + 4*n)*y[x]*Derivative[1][phi][x] - 36*n^2*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + 27*Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[ \left \{ y \left ( x \right ) ={\it DESol} \left ( \left \{ 27\,{\frac {{\rm d}^{3}}{{\rm d}{x}^{3}}}{\it \_Y} \left ( x \right ) -36\,{n}^{2}{\it WeierstrassP} \left ( x,{\it g2},{\it g3} \right ) {\frac {\rm d}{{\rm d}x}}{\it \_Y} \left ( x \right ) + \left ( -8\,{\it WeierstrassPPrime} \left ( x,{\it g2},{\it g3} \right ) {n}^{3}-18\,{\it WeierstrassPPrime} \left ( x,{\it g2},{\it g3} \right ) {n}^{2}+18\,n{\it WeierstrassPPrime} \left ( x,{\it g2},{\it g3} \right ) \right ) {\it \_Y} \left ( x \right ) \right \} , \left \{ {\it \_Y} \left ( x \right ) \right \} \right ) \right \} \]