\[ a^4 y(x)-\lambda (a x-b) \left (y''(x)-a^2 y(x)\right )-2 a^2 y''(x)+y^{(4)}(x)=0 \] ✓ Mathematica : cpu = 262.552 (sec), leaf count = 128
\[\left \{\left \{y(x)\to e^{-a x} \left (c_3 \int _1^x 2 a e^{2 a K[1]} \int e^{-a K[1]} \text {Ai}\left (\frac {a^2+\lambda K[1] a-b \lambda }{(a \lambda )^{2/3}}\right ) \, dK[1] \, dK[1]+c_4 \int _1^x 2 a e^{2 a K[2]} \int e^{-a K[2]} \text {Bi}\left (\frac {a^2+\lambda K[2] a-b \lambda }{(a \lambda )^{2/3}}\right ) \, dK[2] \, dK[2]+c_2 e^{2 a x}+c_1\right )\right \}\right \}\]
✓ Maple : cpu = 1.366 (sec), leaf count = 89
\[ \left \{ y \left ( x \right ) ={{\rm e}^{ax}} \left ( \int \!{{\rm e}^{-2\,ax}} \left ( \int \!{{\rm e}^{ax}} \left ( {{\rm Bi}\left (-{\frac {\lambda \, \left ( ax-b \right ) +{a}^{2}}{a\lambda }\sqrt [3]{-a\lambda }}\right )}{\it \_C4}+{{\rm Ai}\left (-{\frac {\lambda \, \left ( ax-b \right ) +{a}^{2}}{a\lambda }\sqrt [3]{-a\lambda }}\right )}{\it \_C3} \right ) \,{\rm d}x+{\it \_C2} \right ) \,{\rm d}x+{\it \_C1} \right ) \right \} \]