\[ a y(x) y'(x)-2 a y(x)^2+b y(x)^3+y(x) y''(x)-y'(x)^2=0 \] ✗ Mathematica : cpu = 46.9325 (sec), leaf count = 0 , could not solve
DSolve[-2*a*y[x]^2 + b*y[x]^3 + a*y[x]*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 1.043 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a},[ \left \{ \left ( {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) \right ) {\it \_b} \left ( {\it \_a} \right ) -{\frac { \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}-{\it \_a}\,{\it \_b} \left ( {\it \_a} \right ) a-b{{\it \_a}}^{3}+2\,{{\it \_a}}^{2}a}{{\it \_a}}}=0 \right \} , \left \{ {\it \_a}=y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right \} , \left \{ x=\int \! \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{-1}\,{\rm d}{\it \_a}+{\it \_C1},y \left ( x \right ) ={\it \_a} \right \} ] \right ) \right \} \]