\[ (x-y(x)) y''(x)-h\left (y'(x)\right )=0 \] ✓ Mathematica : cpu = 0.838566 (sec), leaf count = 73
\[\text {Solve}\left [\left \{x=\int \frac {\exp \left (-\int _1^{\text {K$\$$5131044}} \frac {K[3]-1}{h(K[3])} \, dK[3]-c_1\right )}{h(\text {K$\$$5131044})} \, d\text {K$\$$5131044}+c_2,x=\exp \left (-\int _1^{\text {K$\$$5131044}} \frac {K[3]-1}{h(K[3])} \, dK[3]-c_1\right )+y(x)\right \},\{y(x),\text {K$\$$5131044}\}\right ]\]
✓ Maple : cpu = 0.112 (sec), leaf count = 39
\[ \left \{ y \left ( x \right ) =x+{\it RootOf} \left ( -x+\int ^{{\it \_Z}}\! \left ( -1+{\it RootOf} \left ( \int ^{{\it \_Z}}\!{\frac {{\it \_a}-1}{h \left ( {\it \_a} \right ) }}{d{\it \_a}}+\ln \left ( -{\it \_g} \right ) +{\it \_C1} \right ) \right ) ^{-1}{d{\it \_g}}+{\it \_C2} \right ) \right \} \]