\[ y''(x) \left (\text {f1}(x) y'(x)+\text {f2}(x) y(x)\right )+\text {f3}(x) y'(x)^2+\text {f4}(x) y(x) y'(x)+\text {f5}(x) y(x)^2=0 \] ✗ Mathematica : cpu = 356.668 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 1.209 (sec), leaf count = 88
\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}},[ \left \{ {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) ={\frac {- \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{3}{\it f1}+ \left ( -{\it f2}-{\it f3} \right ) \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}-{\it f4} \left ( {\it \_a} \right ) {\it \_b} \left ( {\it \_a} \right ) -{\it f5} \left ( {\it \_a} \right ) }{{\it \_b} \left ( {\it \_a} \right ) {\it f1}+{\it f2}}} \right \} , \left \{ {\it \_a}=x,{\it \_b} \left ( {\it \_a} \right ) ={\frac {{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) }{y \left ( x \right ) }} \right \} , \left \{ x={\it \_a},y \left ( x \right ) ={{\rm e}^{\int \!{\it \_b} \left ( {\it \_a} \right ) \,{\rm d}{\it \_a}+{\it \_C1}}} \right \} ] \right ) \right \} \]