\[ \left \{4 x'(t)+44 x(t)+9 y'(t)+49 y(t)=t,3 x'(t)+34 x(t)+7 y'(t)+38 y(t)=e^t\right \} \] ✓ Mathematica : cpu = 0.0463303 (sec), leaf count = 112
\[\left \{\left \{x(t)\to \frac {1}{315} e^{-6 t} \left (63 \left (4 c_1-c_2\right ) e^{5 t}+63 \left (c_1+c_2\right )+35 e^{6 t} (57 t-56)-1305 e^{7 t}\right ),y(t)\to \frac {1}{315} e^{-6 t} \left (-63 \left (4 c_1-c_2\right ) e^{5 t}+252 \left (c_1+c_2\right )-35 e^{6 t} (51 t-55)+1080 e^{7 t}\right )\right \}\right \}\]
✓ Maple : cpu = 0.063 (sec), leaf count = 52
\[ \left \{ \left \{ x \left ( t \right ) ={\it \_C2}\,{{\rm e}^{-t}}+{{\rm e}^{-6\,t}}{\it \_C1}-{\frac {56}{9}}+{\frac {19\,t}{3}}-{\frac {29\,{{\rm e}^{t}}}{7}},y \left ( t \right ) =-{\it \_C2}\,{{\rm e}^{-t}}+4\,{{\rm e}^{-6\,t}}{\it \_C1}+{\frac {55}{9}}+{\frac {24\,{{\rm e}^{t}}}{7}}-{\frac {17\,t}{3}} \right \} \right \} \]