\[ y'(x) (a y(x)+b x+c)+\alpha y(x)+\beta x+\gamma =0 \] ✗ Mathematica : cpu = 300.189 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.215 (sec), leaf count = 178
\[ \left \{ y \left ( x \right ) ={\frac {1}{-a\beta +b\alpha } \left ( -b\gamma +\beta \,c+{\frac {x \left ( a\beta -b\alpha \right ) +a\gamma -\alpha \,c}{2\,a} \left ( \sqrt {4\,a\beta -{\alpha }^{2}-2\,b\alpha -{b}^{2}}\tan \left ( {\it RootOf} \left ( \sqrt {4\,a\beta -{\alpha }^{2}-2\,b\alpha -{b}^{2}}\ln \left ( {\frac { \left ( a\beta \,x-\alpha \,bx+a\gamma -\alpha \,c \right ) ^{2} \left ( \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}+1 \right ) \left ( 4\,a\beta -{\alpha }^{2}-2\,b\alpha -{b}^{2} \right ) }{4\,a}} \right ) +2\,{\it \_C1}\,\sqrt {4\,a\beta -{\alpha }^{2}-2\,b\alpha -{b}^{2}}+2\,{\it \_Z}\,\alpha -2\,{\it \_Z}\,b \right ) \right ) +\alpha +b \right ) } \right ) } \right \} \]