\[ x (2 y(x)-x-1) y'(x)+(-y(x)+2 x-1) y(x)=0 \] ✓ Mathematica : cpu = 14.8898 (sec), leaf count = 457
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{2} x}{\sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}-\frac {\sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}{3 \sqrt [3]{2} c_1}-x-1\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}{6 \sqrt [3]{2} c_1}-x-1\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1^2 x^2+\sqrt {\left (27 c_1^2 x^2+27 c_1^2 x\right ){}^2-108 c_1^3 x^3}+27 c_1^2 x}}{6 \sqrt [3]{2} c_1}-x-1\right \}\right \}\]
✓ Maple : cpu = 0.12 (sec), leaf count = 391
\[ \left \{ y \left ( x \right ) ={\frac {3}{80\,{\it \_C1}} \left ( \left ( x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( 1+x \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2} \right ) ^{{\frac {2}{3}}} \left ( i\sqrt {3}-1 \right ) \sqrt [3]{5}- \left ( \left ( 1+i\sqrt {3} \right ) x{5}^{{\frac {2}{3}}}+{\frac {80+80\,x}{3}\sqrt [3]{-20\, \left ( -1/20\,\sqrt {5}\sqrt {{\frac {80\, \left ( 1+x \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+x+1 \right ) {{\it \_C1}}^{2}x}} \right ) {\it \_C1} \right ) {\frac {1}{\sqrt [3]{-20\, \left ( -1/20\,\sqrt {5}\sqrt {{\frac {80\, \left ( 1+x \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+x+1 \right ) {{\it \_C1}}^{2}x}}}},y \left ( x \right ) =-{\frac {3}{80\,{\it \_C1}} \left ( \left ( 1+i\sqrt {3} \right ) \left ( x \left ( \sqrt {5}\sqrt {{\frac {80\, \left ( 1+x \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2} \right ) ^{{\frac {2}{3}}}\sqrt [3]{5}-{\it \_C1}\, \left ( \left ( i\sqrt {3}-1 \right ) x{5}^{{\frac {2}{3}}}-{\frac {80+80\,x}{3}\sqrt [3]{-20\, \left ( -1/20\,\sqrt {5}\sqrt {{\frac {80\, \left ( 1+x \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+x+1 \right ) {{\it \_C1}}^{2}x}} \right ) \right ) {\frac {1}{\sqrt [3]{-20\, \left ( -1/20\,\sqrt {5}\sqrt {{\frac {80\, \left ( 1+x \right ) ^{2}{\it \_C1}-x}{{\it \_C1}}}}+x+1 \right ) {{\it \_C1}}^{2}x}}}},y \left ( x \right ) ={\frac {3\,\sqrt [3]{5}}{40\,{\it \_C1}}\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}+{\frac {3\,x{5}^{2/3}}{40}{\frac {1}{\sqrt [3]{x \left ( \sqrt {5}\sqrt {{\frac {80\,{x}^{2}{\it \_C1}+160\,{\it \_C1}\,x+80\,{\it \_C1}-x}{{\it \_C1}}}}-20\,x-20 \right ) {{\it \_C1}}^{2}}}}}-1-x \right \} \]