\[ (y(x)+3 x-1)^2 y'(x)-(2 y(x)-1) (4 y(x)+6 x-3)=0 \] ✓ Mathematica : cpu = 0.157449 (sec), leaf count = 1089
\[\left \{\left \{y(x)\to \frac {1}{6} \left (12 x+4 e^{c_1}-\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}-\frac {1}{2} \sqrt {8 \left (12 x+4 e^{c_1}+1\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}-\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+64 e^{3 c_1}+30 e^{c_1} (1-6 x)^2\right )}{\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}}}+1\right )\right \},\left \{y(x)\to \frac {1}{6} \left (12 x+4 e^{c_1}-\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}+\frac {1}{2} \sqrt {8 \left (12 x+4 e^{c_1}+1\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}-\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+64 e^{3 c_1}+30 e^{c_1} (1-6 x)^2\right )}{\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}}}+1\right )\right \},\left \{y(x)\to \frac {1}{6} \left (12 x+4 e^{c_1}+\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}-\frac {1}{2} \sqrt {8 \left (12 x+4 e^{c_1}+1\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+64 e^{3 c_1}+30 e^{c_1} (1-6 x)^2\right )}{\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}}}+1\right )\right \},\left \{y(x)\to \frac {1}{6} \left (12 x+4 e^{c_1}+\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}+\frac {1}{2} \sqrt {8 \left (12 x+4 e^{c_1}+1\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+64 e^{3 c_1}+30 e^{c_1} (1-6 x)^2\right )}{\sqrt {36 x^2-12 x+16 e^{2 c_1}+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x+e^{c_1}-1\right )}+1}}}+1\right )\right \}\right \}\]
✓ Maple : cpu = 0.235 (sec), leaf count = 71
\[ \left \{ -\ln \left ( {\frac {-6\,y \left ( x \right ) +4-6\,x}{6\,x-1}} \right ) +3\,\ln \left ( {\frac {-6\,y \left ( x \right ) +3}{6\,x-1}} \right ) -3\,\ln \left ( {\frac {-6\,y \left ( x \right ) +18\,x}{6\,x-1}} \right ) -\ln \left ( 6\,x-1 \right ) -{\it \_C1}=0 \right \} \]