\[ y'(x) (a y(x)+b x+c)^2+(\alpha y(x)+\beta x+\gamma )^2=0 \] ✓ Mathematica : cpu = 58.3004 (sec), leaf count = 1
\[\{\}\]
✓ Maple : cpu = 0.052 (sec), leaf count = 115
\[ \left \{ y \left ( x \right ) ={\frac {1}{a\beta -b\alpha } \left ( \left ( \left ( bx+c \right ) \alpha -a \left ( \beta \,x+\gamma \right ) \right ) {\it RootOf} \left ( \int ^{{\it \_Z}}\!{\frac { \left ( {\it \_a}\,a-b \right ) ^{2}}{{{\it \_a}}^{3}{a}^{2}-2\,{{\it \_a}}^{2}ab-{{\it \_a}}^{2}{\alpha }^{2}+2\,{\it \_a}\,\alpha \,\beta +{\it \_a}\,{b}^{2}-{\beta }^{2}}}{d{\it \_a}}+\ln \left ( ax\beta -\alpha \,bx+a\gamma -\alpha \,c \right ) +{\it \_C1} \right ) +\gamma \,b-\beta \,c \right ) } \right \} \]