\[ -2 x^3+\left (2 y(x)^3+y(x)\right ) y'(x)-x=0 \] ✓ Mathematica : cpu = 0.0129898 (sec), leaf count = 151
\[\left \{\left \{y(x)\to -\frac {\sqrt {-\sqrt {8 c_1+4 x^4+4 x^2+1}-1}}{\sqrt {2}}\right \},\left \{y(x)\to \frac {\sqrt {-\sqrt {8 c_1+4 x^4+4 x^2+1}-1}}{\sqrt {2}}\right \},\left \{y(x)\to -\frac {\sqrt {\sqrt {8 c_1+4 x^4+4 x^2+1}-1}}{\sqrt {2}}\right \},\left \{y(x)\to \frac {\sqrt {\sqrt {8 c_1+4 x^4+4 x^2+1}-1}}{\sqrt {2}}\right \}\right \}\]
✓ Maple : cpu = 0.04 (sec), leaf count = 113
\[ \left \{ y \left ( x \right ) =-{\frac {1}{2}\sqrt {-2-2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}},y \left ( x \right ) ={\frac {1}{2}\sqrt {-2-2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}},y \left ( x \right ) =-{\frac {1}{2}\sqrt {-2+2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}},y \left ( x \right ) ={\frac {1}{2}\sqrt {-2+2\,\sqrt {4\,{x}^{4}+4\,{x}^{2}+8\,{\it \_C1}+1}}} \right \} \]