\[ y'(x)^2-2 x y'(x)+y(x)=0 \] ✓ Mathematica : cpu = 0.427669 (sec), leaf count = 1445
\[\left \{\left \{y(x)\to \frac {1}{36} \left (9 x^2+\frac {9 \left (x^3+8 \cosh \left (3 c_1\right )+8 \sinh \left (3 c_1\right )\right ) x}{\sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\left (\left (x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}}+9 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\left (\left (x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}\right )\right \},\left \{y(x)\to \frac {1}{72} \left (18 x^2-\frac {9 i \left (-i+\sqrt {3}\right ) \left (x^3+8 \cosh \left (3 c_1\right )+8 \sinh \left (3 c_1\right )\right ) x}{\sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\left (\left (x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}}+9 i \left (i+\sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\left (\left (x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}\right )\right \},\left \{y(x)\to \frac {1}{72} \left (18 x^2+\frac {9 i \left (i+\sqrt {3}\right ) \left (x^3+8 \cosh \left (3 c_1\right )+8 \sinh \left (3 c_1\right )\right ) x}{\sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\left (\left (x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\left (\left (x^3-1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3+1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}\right )\right \},\left \{y(x)\to \frac {1}{36} \left (9 x^2+\frac {9 \left (x^3-8 \cosh \left (3 c_1\right )-8 \sinh \left (3 c_1\right )\right ) x}{\sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\left (\left (x^3+1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3-1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}}+9 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\left (\left (x^3+1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3-1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}\right )\right \},\left \{y(x)\to \frac {1}{72} \left (18 x^2-\frac {9 i \left (-i+\sqrt {3}\right ) \left (x^3-8 \cosh \left (3 c_1\right )-8 \sinh \left (3 c_1\right )\right ) x}{\sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\left (\left (x^3+1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3-1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}}+9 i \left (i+\sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\left (\left (x^3+1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3-1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}\right )\right \},\left \{y(x)\to \frac {1}{72} \left (18 x^2+\frac {9 i \left (i+\sqrt {3}\right ) \left (x^3-8 \cosh \left (3 c_1\right )-8 \sinh \left (3 c_1\right )\right ) x}{\sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\left (\left (x^3+1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3-1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\left (\left (x^3+1\right ) \cosh \left (\frac {3 c_1}{2}\right )-\left (x^3-1\right ) \sinh \left (\frac {3 c_1}{2}\right )\right ){}^3 \left (\cosh \left (\frac {15 c_1}{2}\right )+\sinh \left (\frac {15 c_1}{2}\right )\right )}}\right )\right \}\right \}\]
✓ Maple : cpu = 0.662 (sec), leaf count = 579
\[ \left \{ y \left ( x \right ) =-{\frac {1}{16} \left ( i\sqrt {3} \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}- \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}+2\,x\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}-{x}^{2} \right ) \left ( i\sqrt {3} \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}- \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-6\,x\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}-{x}^{2} \right ) \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{-{\frac {2}{3}}}},y \left ( x \right ) =-{\frac {1}{16} \left ( i\sqrt {3} \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}+ \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-2\,x\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}+{x}^{2} \right ) \left ( i\sqrt {3} \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}-i\sqrt {3}{x}^{2}+ \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{{\frac {2}{3}}}+6\,x\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}+{x}^{2} \right ) \left ( -6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}} \right ) ^{-{\frac {2}{3}}}},y \left ( x \right ) =-{\frac {1}{4} \left ( {{x}^{2}{\frac {1}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}}}}+x+\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}} \right ) ^{2}}+x \left ( {{x}^{2}{\frac {1}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}}}}}+x+\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{x}^{3}{\it \_C1}+9\,{{\it \_C1}}^{2}}} \right ) \right \} \]