\[ y'(x)^2-2 y(x) y'(x)-2 x=0 \] ✓ Mathematica : cpu = 0.84966 (sec), leaf count = 41
\[\text {Solve}\left [\left \{x=\frac {\text {K$\$$162581} \left (2 c_1+\sinh ^{-1}(\text {K$\$$162581})\right )}{2 \sqrt {\text {K$\$$162581}^2+1}},\text {K$\$$162581}=2 \left (\frac {x}{\text {K$\$$162581}}+y(x)\right )\right \},\{y(x),\text {K$\$$162581}\}\right ]\]
✓ Maple : cpu = 0.087 (sec), leaf count = 223
\[ \left \{ {1 \left ( \left ( -{\frac {y \left ( x \right ) }{2}}-{\frac {1}{2}\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}} \right ) {\it Arcsinh} \left ( y \left ( x \right ) +\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) +x\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x+2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}+2\,{\it \_C1}\,y \left ( x \right ) +2\,{\it \_C1}\,\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\frac {1}{\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x+2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}}}}=0,{1 \left ( \left ( {\frac {y \left ( x \right ) }{2}}-{\frac {1}{2}\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}} \right ) {\it Arcsinh} \left ( -y \left ( x \right ) +\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) +x\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x-2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}-2\,{\it \_C1}\,y \left ( x \right ) +2\,{\it \_C1}\,\sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x} \right ) {\frac {1}{\sqrt {2\, \left ( y \left ( x \right ) \right ) ^{2}+2\,x-2\,y \left ( x \right ) \sqrt { \left ( y \left ( x \right ) \right ) ^{2}+2\,x}+1}}}}=0 \right \} \]