\[ x y'(x)^2-2 y(x)+x=0 \] ✓ Mathematica : cpu = 1.23538 (sec), leaf count = 163
\[\left \{\text {Solve}\left [\frac {\left (\sqrt {\frac {2 y(x)}{x}-1}-1\right ) \left (\left (\sqrt {\frac {2 y(x)}{x}-1}-1\right ) \log \left (\sqrt {\frac {2 y(x)}{x}-1}-1\right )-1\right )}{\sqrt {\frac {2 y(x)}{x}-1}-\frac {y(x)}{x}}=c_1+\log (x),y(x)\right ],\text {Solve}\left [\frac {x \left (\sqrt {\frac {2 y(x)}{x}-1}+1\right ) \left (\left (\sqrt {\frac {2 y(x)}{x}-1}+1\right ) \log \left (\sqrt {\frac {2 y(x)}{x}-1}+1\right )+1\right )}{x \sqrt {\frac {2 y(x)}{x}-1}+y(x)}+\log (x)=c_1,y(x)\right ]\right \}\]
✓ Maple : cpu = 0.053 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) = \left ( {\frac {1}{2} \left ( {\it lambertW} \left ( {\frac {1}{{\it \_C1}}\sqrt {{\it \_C1}\,x}} \right ) +1 \right ) ^{2} \left ( {\it lambertW} \left ( {\frac {1}{{\it \_C1}}\sqrt {{\it \_C1}\,x}} \right ) \right ) ^{-2}}+{\frac {1}{2}} \right ) x,y \left ( x \right ) = \left ( {\frac {1}{2} \left ( {\it lambertW} \left ( -{\frac {1}{{\it \_C1}}\sqrt {{\it \_C1}\,x}} \right ) +1 \right ) ^{2} \left ( {\it lambertW} \left ( -{\frac {1}{{\it \_C1}}\sqrt {{\it \_C1}\,x}} \right ) \right ) ^{-2}}+{\frac {1}{2}} \right ) x \right \} \]