\[ a x y(x)^3+b y(x)^2+y'(x)=0 \] ✓ Mathematica : cpu = 5.23807 (sec), leaf count = 98
\[\text {Solve}\left [\frac {b^2 \log (x)}{a}=\frac {b^2 \left (\frac {2 \tan ^{-1}\left (\frac {-2 a x y(x)-b}{b \sqrt {-\frac {4 a}{b^2}-1}}\right )}{\sqrt {-\frac {4 a}{b^2}-1}}-\log \left (\frac {a x^2 y(x)^2+b x y(x)-1}{a x^2 y(x)^2}\right )\right )}{2 a}+c_1,y(x)\right ]\]
✓ Maple : cpu = 0.207 (sec), leaf count = 103
\[ \left \{ y \left ( x \right ) ={\frac {1}{x}{{\rm e}^{{\it RootOf} \left ( 2\,\sqrt {{b}^{2}+4\,a}b{\it Artanh} \left ( {\frac {2\,a{{\rm e}^{{\it \_Z}}}+b}{\sqrt {{b}^{2}+4\,a}}} \right ) -\ln \left ( {x}^{2} \left ( a{{\rm e}^{2\,{\it \_Z}}}+b{{\rm e}^{{\it \_Z}}}-1 \right ) \right ) {b}^{2}+2\,{\it \_C1}\,{b}^{2}+2\,{\it \_Z}\,{b}^{2}-4\,\ln \left ( {x}^{2} \left ( a{{\rm e}^{2\,{\it \_Z}}}+b{{\rm e}^{{\it \_Z}}}-1 \right ) \right ) a+8\,{\it \_C1}\,a+8\,{\it \_Z}\,a \right ) }}} \right \} \]