\[ x^4 y'(x)^2-x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 1.55681 (sec), leaf count = 406
\[\left \{\text {Solve}\left [\frac {2 x \sqrt {4 x^2 y(x)+1} \log (x)+x \sqrt {4 x^2 y(x)+1} \log (y(x))-x \sqrt {4 x^2 y(x)+1} \log \left (4 x^2 y(x)+1\right )-2 x \sqrt {4 x^2 y(x)+1} \log \left (\sqrt {4 x^2 y(x)+1}+1\right )+\sqrt {4 x^4 y(x)+x^2} \log \left (\frac {1}{4 x^2 y(x)}+1\right )-\sqrt {4 x^4 y(x)+x^2} \log \left (4 x^2 y(x)+1\right )+x \sqrt {4 x^2 y(x)+1} \log \left (4 x^3 y(x)+x\right )}{2 \sqrt {4 x^4 y(x)+x^2}}=c_1,y(x)\right ],\text {Solve}\left [\frac {-2 x \sqrt {4 x^2 y(x)+1} \log (x)-x \sqrt {4 x^2 y(x)+1} \log (y(x))+x \sqrt {4 x^2 y(x)+1} \log \left (4 x^2 y(x)+1\right )+2 x \sqrt {4 x^2 y(x)+1} \log \left (\sqrt {4 x^2 y(x)+1}+1\right )+\sqrt {4 x^4 y(x)+x^2} \log \left (\frac {1}{4 x^2 y(x)}+1\right )-\sqrt {4 x^4 y(x)+x^2} \log \left (4 x^2 y(x)+1\right )-x \sqrt {4 x^2 y(x)+1} \log \left (4 x^3 y(x)+x\right )}{2 \sqrt {4 x^4 y(x)+x^2}}=c_1,y(x)\right ]\right \}\]
✓ Maple : cpu = 0.778 (sec), leaf count = 45
\[ \left \{ y \left ( x \right ) ={\frac {i{\it \_C1}-x}{x{{\it \_C1}}^{2}}},y \left ( x \right ) ={\frac {-i{\it \_C1}-x}{x{{\it \_C1}}^{2}}},y \left ( x \right ) =-{\frac {1}{4\,{x}^{2}}} \right \} \]