[next] [prev] [prev-tail] [tail] [up]
(x2+y(x)2)f(y(x)x2+y(x)2)(y′(x)2+1)−(xy′(x)−y(x))2=0 ✓ Mathematica : cpu = 4.0333 (sec), leaf count = 253
{Solve[c1=log(x)+∫1y(x)x(K[1]2+1)f(K[1]K[1]2+1)−1(K[1]−i)(K[1]+i)f(K[1]K[1]2+1)(K[1]f(K[1]K[1]2+1)+if(K[1]K[1]2+1)−1)dK[1],y(x)],Solve[c1=log(x)+∫1y(x)x(K[2]2+1)f(K[2]K[2]2+1)−1(K[2]−i)(K[2]+i)f(K[2]K[2]2+1)(K[2]f(K[2]K[2]2+1)−if(K[2]K[2]2+1)−1)dK[2],y(x)]}
✓ Maple : cpu = 1.198 (sec), leaf count = 155
{y(x)=RootOf(−ln(x)+∫_Z1_a2+1(−_af(_a1_a2+1)+−(f(_a1_a2+1))2+f(_a1_a2+1))(f(_a1_a2+1))−1d_a+_C1)x,y(x)=RootOf(−ln(x)+∫_Z−1_a2+1(_af(_a1_a2+1)+−(f(_a1_a2+1))2+f(_a1_a2+1))(f(_a1_a2+1))−1d_a+_C1)x}
[next] [prev] [prev-tail] [front] [up]