\[ y'(x)=\frac {\sqrt {y(x)}}{F\left (\frac {x-y(x)}{\sqrt {y(x)}}\right )+\sqrt {y(x)}} \] ✗ Mathematica : cpu = 300.005 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 2.772 (sec), leaf count = 40
\[ \left \{ {\frac {\ln \left ( y \left ( x \right ) \right ) }{2}}-\int ^{{x{\frac {1}{\sqrt {y \left ( x \right ) }}}}-\sqrt {y \left ( x \right ) }}\! \left ( 2\,F \left ( {\it \_a} \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}-{\it \_C1}=0 \right \} \]