\[ y'(x)=\frac {e^{2 x^2} x y(x)^3}{e^{x^2} y(x)+1} \] ✓ Mathematica : cpu = 15.4173 (sec), leaf count = 49
\[\text {Solve}\left [-\frac {1}{2} \log \left (e^{2 x^2} y(x)^2+2 e^{x^2} y(x)+2\right )+\tan ^{-1}\left (e^{x^2} y(x)+1\right )+\log (y(x))=c_1,y(x)\right ]\]
✓ Maple : cpu = 3.229 (sec), leaf count = 85
\[ \left \{ y \left ( x \right ) ={\frac {1}{{{\rm e}^{{x}^{2}}}} \left ( 1-\tan \left ( {\it RootOf} \left ( -2\,{x}^{2}-\ln \left ( {\frac {81\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}}{10}}+{\frac {81}{10}} \right ) +2\,\ln \left ( 9/2\,\tan \left ( {\it \_Z} \right ) -9/2 \right ) +6\,{\it \_C1}-2\,{\it \_Z} \right ) \right ) \right ) \left ( \tan \left ( {\it RootOf} \left ( -2\,{x}^{2}-\ln \left ( {\frac {81\, \left ( \tan \left ( {\it \_Z} \right ) \right ) ^{2}}{10}}+{\frac {81}{10}} \right ) +2\,\ln \left ( 9/2\,\tan \left ( {\it \_Z} \right ) -9/2 \right ) +6\,{\it \_C1}-2\,{\it \_Z} \right ) \right ) \right ) ^{-1}} \right \} \]