\[ y'(x)=\frac {1}{16} x (y(x)+1)^2 (-\log (y(x)-1)+\log (y(x)+1)+2 \log (x))^2 \] ✗ Mathematica : cpu = 300. (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 0.539 (sec), leaf count = 105
\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{\frac {1}{4+4\,{\it \_a}} \left ( {\frac {{x}^{2} \left ( 1+{\it \_a} \right ) \left ( \ln \left ( 1+{\it \_a} \right ) \right ) ^{2}}{4}}+{x}^{2} \left ( 1+{\it \_a} \right ) \left ( -{\frac {\ln \left ( {\it \_a}-1 \right ) }{2}}+\ln \left ( x \right ) \right ) \ln \left ( 1+{\it \_a} \right ) +{\frac {{x}^{2} \left ( 1+{\it \_a} \right ) \left ( \ln \left ( {\it \_a}-1 \right ) \right ) ^{2}}{4}}-\ln \left ( x \right ) {x}^{2} \left ( 1+{\it \_a} \right ) \ln \left ( {\it \_a}-1 \right ) +{x}^{2} \left ( 1+{\it \_a} \right ) \left ( \ln \left ( x \right ) \right ) ^{2}-4\,{\it \_a}+4 \right ) ^{-1}}\,{\rm d}{\it \_a}-{\frac {\ln \left ( x \right ) }{16}}-{\it \_C1}=0 \right \} \]