\[ y'(x)=-\frac {y(x) (x \log (y(x))+\log (y(x))-1)}{x+1} \] ✓ Mathematica : cpu = 0.0646671 (sec), leaf count = 24
\[\left \{\left \{y(x)\to e^{e^{-x-1} \left (e c_1+\text {Ei}(x+1)\right )}\right \}\right \}\]
✓ Maple : cpu = 0.139 (sec), leaf count = 31
\[ \left \{ y \left ( x \right ) ={1{{\rm e}^{{\frac {{\it \_C1}}{{{\rm e}^{x}}}}}} \left ( {{\rm e}^{{\frac {{\it Ei} \left ( 1,-1-x \right ) }{{{\rm e}^{x}}{\rm e}}}}} \right ) ^{-1}} \right \} \]