\[ y'(x)=\frac {x^3 y(x)+x^3+x y(x)^2+y(x)^3}{(x-1) x^3} \] ✓ Mathematica : cpu = 0.0712789 (sec), leaf count = 51
\[\text {Solve}\left [4 c_1+\log \left (\frac {y(x)^2}{x^2}+1\right )+4 \log (1-x)=2 \left (\log \left (\frac {y(x)+x}{x}\right )+\tan ^{-1}\left (\frac {y(x)}{x}\right )+2 \log (x)\right ),y(x)\right ]\]
✓ Maple : cpu = 0.11 (sec), leaf count = 50
\[ \left \{ -{\frac {1}{4}\ln \left ( {\frac { \left ( y \left ( x \right ) \right ) ^{2}+{x}^{2}}{{x}^{2}}} \right ) }+{\frac {1}{2}\arctan \left ( {\frac {y \left ( x \right ) }{x}} \right ) }+{\frac {1}{2}\ln \left ( {\frac {y \left ( x \right ) +x}{x}} \right ) }-\ln \left ( x-1 \right ) +\ln \left ( x \right ) -{\it \_C1}=0 \right \} \]