2.816   ODE No. 816

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=\frac {x (x-y(x))^3 (y(x)+x)^3}{y(x) \left (x^2-y(x)^2-1\right )} \] Mathematica : cpu = 0.176433 (sec), leaf count = 1

\[\{\}\]

Maple : cpu = 1.025 (sec), leaf count = 190

\[ \left \{ \int _{{\it \_b}}^{x}\!{\frac { \left ( {\it \_a}-y \left ( x \right ) \right ) ^{3} \left ( {\it \_a}+y \left ( x \right ) \right ) ^{3}{\it \_a}}{{{\it \_a}}^{6}-3\,{{\it \_a}}^{4} \left ( y \left ( x \right ) \right ) ^{2}+3\,{{\it \_a}}^{2} \left ( y \left ( x \right ) \right ) ^{4}- \left ( y \left ( x \right ) \right ) ^{6}-{{\it \_a}}^{2}+ \left ( y \left ( x \right ) \right ) ^{2}+1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!-{\frac { \left ( -{{\it \_f}}^{2}+{x}^{2}-1 \right ) {\it \_f}}{-{{\it \_f}}^{6}+3\,{{\it \_f}}^{4}{x}^{2}-3\,{{\it \_f}}^{2}{x}^{4}+{x}^{6}+{{\it \_f}}^{2}-{x}^{2}+1}}-\int _{{\it \_b}}^{x}\!4\,{\frac { \left ( {\it \_a}-{\it \_f} \right ) ^{2} \left ( {\it \_a}+{\it \_f} \right ) ^{2}{\it \_a}\,{\it \_f}\, \left ( {{\it \_a}}^{2}-{{\it \_f}}^{2}-3/2 \right ) }{ \left ( {{\it \_a}}^{6}-3\,{{\it \_a}}^{4}{{\it \_f}}^{2}+ \left ( 3\,{{\it \_f}}^{4}-1 \right ) {{\it \_a}}^{2}-{{\it \_f}}^{6}+{{\it \_f}}^{2}+1 \right ) ^{2}}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0 \right \} \]