\[ y'(x)=\frac {e^{\frac {x^2}{4}} y(x) \left (2 e^{-\frac {3 x^2}{4}} y(x)^2+e^{-\frac {x^2}{2}} x y(x)+e^{-\frac {x^2}{4}} x\right )}{2 e^{-\frac {x^2}{4}} y(x)+2} \] ✓ Mathematica : cpu = 0.0431205 (sec), leaf count = 98
\[\left \{\left \{y(x)\to \frac {e^{\frac {x^2}{2}}}{\sqrt {e^{\frac {x^2}{2}} \left (c_1-2 x+1\right )}-e^{\frac {x^2}{4}}}\right \},\left \{y(x)\to -\frac {e^{\frac {x^2}{2}}}{\sqrt {e^{\frac {x^2}{2}} \left (c_1-2 x+1\right )}+e^{\frac {x^2}{4}}}\right \}\right \}\]
✓ Maple : cpu = 0.12 (sec), leaf count = 162
\[ \left \{ y \left ( x \right ) ={1 \left ( {{\rm e}^{{\frac {{x}^{2}}{2}}}} \left ( \sqrt {{\it \_C1}-2\,x}-1 \right ) {{\rm e}^{-{\frac {{x}^{2}}{4}}}}-{{\rm e}^{{\frac {{x}^{2}}{4}}}}\sqrt {{\it \_C1}-2\,x} \right ) \left ( {{\rm e}^{-{\frac {{x}^{2}}{4}}}} \right ) ^{-1} \left ( {{\rm e}^{-{\frac {{x}^{2}}{4}}}}{{\rm e}^{{\frac {{x}^{2}}{2}}}}+{{\rm e}^{{\frac {{x}^{2}}{4}}}}\sqrt {{\it \_C1}-2\,x} \right ) ^{-1}},y \left ( x \right ) ={1 \left ( {{\rm e}^{{\frac {{x}^{2}}{2}}}} \left ( \sqrt {{\it \_C1}-2\,x}+1 \right ) {{\rm e}^{-{\frac {{x}^{2}}{4}}}}-{{\rm e}^{{\frac {{x}^{2}}{4}}}}\sqrt {{\it \_C1}-2\,x} \right ) \left ( {{\rm e}^{-{\frac {{x}^{2}}{4}}}} \right ) ^{-1} \left ( {{\rm e}^{{\frac {{x}^{2}}{4}}}}\sqrt {{\it \_C1}-2\,x}-{{\rm e}^{-{\frac {{x}^{2}}{4}}}}{{\rm e}^{{\frac {{x}^{2}}{2}}}} \right ) ^{-1}} \right \} \]