\[ y'(x)=-y(x) \left (-\text {$\_$F1}(x)-\frac {\log (y(x))}{x}+\frac {\log (y(x))}{x \log (x)}\right ) \] ✓ Mathematica : cpu = 2.78472 (sec), leaf count = 47
\[\text {Solve}\left [\text {ConditionalExpression}\left [c_1=\int _1^x -\frac {K[1] \log (K[1]) \text {$\_$F1}(K[1])+\log (y(x)) (\log (K[1])-1)}{K[1]^2} \, dK[1],\Re (x)>0\lor x\notin \mathbb {R}\right ],y(x)\right ]\]
✓ Maple : cpu = 0.367 (sec), leaf count = 30
\[ \left \{ y \left ( x \right ) ={{\rm e}^{{\frac {{\it \_C1}\,x}{\ln \left ( x \right ) }}}}{{\rm e}^{{\frac {x}{\ln \left ( x \right ) }\int \!{\frac {{\it \_F1} \left ( x \right ) \ln \left ( x \right ) }{x}}\,{\rm d}x}}} \right \} \]